Chapter 7: Q21E (page 397)
(a) The ellipse
\(\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{a}}^{\rm{2}}}}}{\rm{ + }}\frac{{{{\rm{y}}^{\rm{2}}}}}{{{{\rm{b}}^{\rm{2}}}}}{\rm{ = 1}}\)
is rotated about the \({\rm{x - }}\)axis to form a surface called an ellipsoid, or prolate spheroid. Find the surface area of this ellipsoid.
(b) If the ellipse in part (a) is rotated about its minor axis (the \({\rm{y - }}\)axis), the resulting ellipsoid is called an oblate spheroid. Find the surface area of this ellipsoid.
Short Answer
(a) The surface area is found to be \({\rm{S = 2\pi }}\left[ {\frac{{{{\rm{a}}^{\rm{2}}}{\rm{b}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{arcsin}}\left( {\frac{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{\rm{a}}}} \right){\rm{ + }}{{\rm{b}}^{\rm{2}}}} \right]\).
(b)The surface area is found to be \({\rm{S = 2\pi }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}\frac{{{\rm{2\pi a}}{{\rm{b}}^{\rm{2}}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{ln}}\left| {\frac{{{\rm{a + }}\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{\rm{b}}}} \right|\).
Step by step solution
Concept Introduction
The area of an ellipse is specified by its major and minor axes, and the form of the ellipse is oval. The area of an ellipse\({\rm{ = }}\pi {\rm{ab}}\), where\({\rm{a}}\)and\({\rm{b}}\)are the lengths of the ellipse's semi-major and semi-minor axes, respectively. Ellipse is analogous to other portions of the conic section that are open in shape and unbounded, such as parabola and hyperbola.
Derivation of Equation
(a)
Recall from your elite conics knowledge, this is centred at the origin, has a horizontal major axis and\({\rm{a}}\)is the distancefrom the origin to a major vertex. So, double the result from integrating from\({\rm{0}}\)to\({\rm{a}}\).
For rotating about the\({\rm{x}}\)-axis, solve for\({\rm{y}}\)and keep the positive square root, since onlythe top half is needed. Then find\({\rm{y'}}\)for the integral later.
\(\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\frac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = 1, a > b}}\)
\(\frac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = 1 - }}\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\)
\({{\text{y}}^{\text{2}}}{\text{ = }}{{\text{b}}^{\text{2}}}\left( {{\text{1 - }}\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right){\text{ = }}\frac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} \right){\text{ factor out }}\frac{{\text{1}}}{{{{\text{a}}^{\text{2}}}}}\)
\({\text{y = }}\frac{{\text{b}}}{{\text{a}}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} {\text{ square root both sides}}\)
\({{\text{y}}^{\text{'}}}{\text{ = }}\frac{{\text{b}}}{{\text{a}}}{\text{x}}\frac{{\text{1}}}{{\text{2}}}{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} \right)^{{\text{ - 1/2}}}}{\text{( - 2x)}}\)
\({\text{ = - }}\frac{{{\text{bx}}}}{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}\)
Substituting the values
Plug the stuff into the surface area formula (doubled) –
\({\text{S = 2}}\int_{\text{c}}^{\text{d}} {\text{2}} {\text{πy}}\sqrt {{\text{1 + }}{{\left( {{{\text{y}}^{\text{'}}}} \right)}^{\text{2}}}} {\text{dx}}\)
\({\text{ = 2}}\int_{\text{0}}^{\text{a}} {\text{2}} {\text{π}}\left( {\frac{{\text{b}}}{{\text{a}}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} } \right)\sqrt {{\text{1 + }}{{\left( {{\text{ - }}\frac{{{\text{bx}}}}{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} }}} \right)}^{\text{2}}}} {\text{dx}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{\text{a}}}\int_{\text{0}}^{\text{a}} {\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} } \sqrt {{\text{1 + }}\frac{{{{\text{b}}^{\text{2}}}{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} \right)}}} {\text{dx}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{\text{a}}}\int_{\text{0}}^{\text{a}} {\sqrt {\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} \right)\left( {{\text{1 + }}\frac{{{{\text{b}}^{\text{2}}}{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}} \right)}}} \right)} } {\text{dx [}}\sqrt {\text{u}} \sqrt {\text{v}} {\text{ = }}\sqrt {{\text{uv}}} {\text{]}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{\text{a}}}\int_{\text{0}}^{\text{a}} {\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{x}}^{\text{2}}}{\text{ + }}\frac{{{{\text{b}}^{\text{2}}}{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} } {\text{dx}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{\text{a}}}\int_{\text{0}}^{\text{a}} {\sqrt {\frac{{{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{a}}^{\text{2}}}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} } {\text{dx common denominator}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{\text{a}}}\int_{\text{0}}^{\text{a}} {\frac{{\text{1}}}{{\text{a}}}} \sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{a}}^{\text{2}}}{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{{\text{x}}^{\text{2}}}} {\text{dx}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{{{\text{a}}^2}}}\int_{\text{0}}^{\text{a}} {\sqrt {{{\text{a}}^{\text{4}}}{\text{ - (}}{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{)}}{{\text{x}}^{\text{2}}}} {\text{dx}}} \)
\({\text{ = }}\frac{{{\text{4πb}}}}{{{{\text{a}}^2}}}\int_{\text{0}}^{\text{a}} {\sqrt {{{\text{a}}^{\text{4}}}\left( {{\text{1 - }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{a}}^{\text{4}}}}}{{\text{x}}^{\text{2}}}} \right)} {\text{dx factor out }}} {{\text{a}}^{\text{4}}}\)
\({\text{ = }}\frac{{{\text{4πb}}}}{{{{\text{a}}^2}}}\int_{\text{0}}^{\text{a}} {{{\text{a}}^2}\sqrt {{\text{1 - }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{a}}^{\text{4}}}}}{{\text{x}}^{\text{2}}}} {\text{dx }}} \)
\({\text{ = 4πb}}\int_{\text{0}}^{\text{a}} {\sqrt {{\text{1 - }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{a}}^{\text{4}}}}}{{\text{x}}^{\text{2}}}} {\text{dx }}} \)
Using Pythagoras Theorem
Carry out trigonometric substitution –
Let \(\frac{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{{{\rm{a}}^{\rm{2}}}}}{\rm{x = sin\theta }} \to {\rm{x = }}\frac{{{{\rm{a}}^{\rm{2}}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{sin\theta }}\).
Then, it is\({\rm{dx = }}\frac{{{{\rm{a}}^{\rm{2}}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{cos\theta d\theta }}\).
Also, for later converting back to \({\rm{x}}\)–
\({\rm{\theta = arcsin}}\left( {\frac{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{{{\rm{a}}^{\rm{2}}}}}{\rm{x}}} \right)\)
And forming a right triangle we have opposite =\({\rm{x}}\sqrt {\left( {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} \right)} \), hypotenuse =\({{\rm{a}}^2}\). So adjacent side is –
\({\text{adj = }}\sqrt {{{\left( {{{\text{a}}^{\text{2}}}} \right)}^{\text{2}}}{\text{ - }}{{\left( {{\text{x}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} } \right)}^{\text{2}}}} {\text{ = }}\sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{x}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} \)
\({\text{cos\θ= }}\frac{{\sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{x}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{a}}^{\text{2}}}}}\)
Now, on evaluating –
\({\text{4bπ }}\int_{\text{0}}^{\text{a}} {\sqrt {{\text{1 - }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{a}}^{\text{4}}}}}{{\text{x}}^{\text{2}}}} } {\text{dx}}\)
\({\text{ = 4bπ}}\int_{\text{0}}^{{\text{x(a)}}} {\sqrt {{\text{1 - si}}{{\text{n}}^{\text{2}}}{\text{θ}}} } \frac{{{{\text{a}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{cosθdθ }}\)
\({\text{ = }}\frac{{{\text{4}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int_{\text{0}}^{{\text{x(a)}}} {\sqrt {{\text{co}}{{\text{s}}^{\text{2}}}{\text{θ}}} } {\text{cosθdθ}}\)
\({\text{ = }}\frac{{{\text{4}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int_{\text{0}}^{{\text{x(a)}}} {{\text{co}}{{\text{s}}^{\text{2}}}} {\text{θdθ}}\)
\({\text{ = }}\frac{{{\text{4}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int_{\text{0}}^{{\text{x(a)}}} {\frac{{\text{1}}}{{\text{2}}}} {\text{(1 + cos2θ)dθ power reduction formula}}\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int_{\text{0}}^{{\text{x(a)}}} {{\text{(1 + cos2θ)}}} {\text{dθ}}\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {{\text{θ+ }}\frac{{\text{1}}}{{\text{2}}}{\text{sin2θ}}} \right]_{\text{0}}^{{\text{x(a)}}}\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {{\text{θ+ }}\frac{{\text{1}}}{{\text{2}}}{\text{(2sinθcosθ)}}} \right]_{\text{0}}^{{\text{x(a)}}}{\text{ double angle formula}}\)
Substituting the values
Convert back to\({\rm{x}}\) using the stuff from the trig substitution box above –
\({\text{S = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{[θ+ sinθcosθ]}}_{\text{0}}^{{\text{x(a)}}}\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {{\text{arcsin}}\left( {\frac{{{\text{x}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{2}}}}}} \right){\text{ + }}\frac{{{\text{x}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{2}}}}} \cdot \frac{{\sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{x}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{a}}^{\text{2}}}}}} \right]_{\text{0}}^{\text{a}}\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {{\text{arcsin}}\left( {\frac{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{2}}}}}} \right){\text{ + }}\frac{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{2}}}}} \cdot \frac{{\sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{a}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{a}}^{\text{2}}}}}{\text{ - (0 + 0)}}} \right]\)
\({\text{ = }}\frac{{{\text{2}}{{\text{a}}^{\text{2}}}{\text{bπ}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {{\text{arcsin}}\left( {\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{a}}}} \right){\text{ + }}\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \sqrt {{{\text{a}}^{\text{4}}}{\text{ - }}{{\text{a}}^{\text{4}}}{\text{ + }}{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{3}}}}}} \right]\)
\({\text{ = 2π}}\left[ {\frac{{{{\text{a}}^{\text{2}}}{\text{b}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{arcsin}}\left( {\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{a}}}} \right){\text{ + }}\frac{{{{\text{a}}^{\text{2}}}{\text{b}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }} \cdot \frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \sqrt {{{\text{a}}^{\text{2}}}{{\text{b}}^{\text{2}}}} }}{{{{\text{a}}^{\text{3}}}}}} \right]\)
\({\text{ = 2π}}\left[ {\frac{{{{\text{a}}^{\text{2}}}{\text{b}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{arcsin}}\left( {\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{a}}}} \right){\text{ + }}\frac{{{\text{b}} \cdot {\text{ab}}}}{{\text{a}}}} \right]\)
\({\text{ = 2π}}\left[ {\frac{{{{\text{a}}^{\text{2}}}{\text{b}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{arcsin}}\left( {\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{a}}}} \right){\text{ + }}{{\text{b}}^{\text{2}}}} \right]\)
Therefore, the value for surface area is \({\rm{S = 2\pi }}\left( {\frac{{{{\rm{a}}^{\rm{2}}}{\rm{b}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{arcsin}}\left( {\frac{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{\rm{a}}}} \right){\rm{ + }}{{\rm{b}}^{\rm{2}}}} \right)\).
Derivation of Equation
(b)
Recall from your elite conics knowledge, this is centred at the origin, has a horizontal major axis and\({\rm{b}}\)is the distance from the origin to a minor vertex. So, double the result from integrating from\({\rm{0}}\)to\({\rm{b}}\).
For rotating about the\({\rm{y}}\)-axis, solve for\({\rm{x}}\)and keep the positive square root, since onlythe top half is needed. Then find\({\rm{x'}}\)for the integral later.
\(\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\frac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = 1, a > b about the y - axis}}\)
\(\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = 1 - }}\frac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}\)
\({{\text{x}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}\left( {{\text{1 - }}\frac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}} \right){\text{ = }}\frac{{{{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}\left( {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} \right){\text{ factor out }}\frac{{\text{1}}}{{{{\text{b}}^{\text{2}}}}}\)
\({\text{x = }}\frac{{\text{a}}}{{\text{b}}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} {\text{ square root both sides}}\)
\({{\text{x}}^{\text{'}}}{\text{ = }}\frac{{\text{a}}}{{\text{b}}} \cdot \frac{{\text{1}}}{{\text{2}}}{\left( {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} \right)^{{\text{ - 1/2}}}}{\text{( - 2y)}}\)
\({\text{ = - }}\frac{{{\text{ay}}}}{{{\text{b}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} }}\)
Substituting the values
Plug the stuff into the surface area formula (doubled) –
\({\text{S = 2}}\int_{\text{c}}^{\text{d}} {\text{2}} {\text{\pi x}}\sqrt {{\text{1 + }}{{\left( {{{\text{x}}^{\text{'}}}} \right)}^{\text{2}}}} {\text{dy}}\)
\({\text{ = 2}}\int_{\text{0}}^{\text{a}} {\text{2}} {\text{\pi }}\left( {\frac{{\text{a}}}{{\text{b}}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} } \right)\sqrt {{\text{1 + }}{{\left( {{\text{ - }}\frac{{{\text{ay}}}}{{{\text{b}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} }}} \right)}^{\text{2}}}} {\text{dy}}\)
Notice that this is like part (a) of this problem at the same point of the work, but with\({\rm{y}}\)instead of\({\rm{x}}\), and\({\rm{a}}\)and\({\rm{b}}\)swapped. However, we can't simply swap\({\rm{a}}\)and\({\rm{b}}\)because that results in\({\rm{a}}\)negativeinside the radical since\({\rm{a > b}}\).
\({\rm{S = 2\pi }}\left( {\frac{{{\rm{a}}{{\rm{b}}^{\rm{2}}}}}{{\sqrt {{{\rm{b}}^{\rm{2}}}{\rm{ - }}{{\rm{a}}^{\rm{2}}}} }}{\rm{arcsin}}\left( {\frac{{\sqrt {{{\rm{b}}^{\rm{2}}}{\rm{ - }}{{\rm{a}}^{\rm{2}}}} }}{{\rm{b}}}} \right){\rm{ + }}{{\rm{a}}^{\rm{2}}}} \right){\rm{ (wrong!)}}\)
\({\rm{S = }}\frac{{{\rm{4\pi a}}}}{{\rm{b}}}\int_{\rm{0}}^{\rm{b}} {\sqrt {{{\rm{b}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}} } \sqrt {{\rm{1 + }}\frac{{{{\rm{a}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}}}{{{{\rm{b}}^{\rm{2}}}\left( {{{\rm{b}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}} \right)}}} {\rm{dy}}\)
\({\text{ = }}\frac{{{\text{4πa}}}}{{\text{b}}}\int_{\text{0}}^{\text{b}} {\sqrt {\left( {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} \right)\left( {{\text{1 + }}\frac{{{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}\left( {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} \right)}}} \right)} } {\text{dy [}}\sqrt {\text{u}} \sqrt {\text{v}} {\text{ = }}\sqrt {{\text{uv}}} {\text{]}}\)
\({\text{ = }}\frac{{{\text{4πa}}}}{{\text{b}}}\int_{\text{0}}^{\text{b}} {\sqrt {{{\text{b}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}{\text{ + }}\frac{{{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}} } {\text{dy}}\)
\({\text{ = }}\frac{{{\text{4πa}}}}{{\text{b}}}\int_{\text{0}}^{\text{b}} {\frac{{\text{1}}}{{{{\text{b}}^{\text{2}}}}}} \sqrt {{{\text{b}}^{\text{4}}}{\text{ - }}{{\text{b}}^{\text{2}}}{{\text{y}}^{\text{2}}}{\text{ + }}{{\text{a}}^{\text{2}}}{{\text{y}}^{\text{2}}}} {\text{dy}}\)
\({\text{ = }}\frac{{{\text{4πa}}}}{{{{\text{b}}^{\text{2}}}}}\int_{\text{0}}^{\text{b}} {\sqrt {{{\text{b}}^{\text{4}}}{\text{ + (}}{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}{\text{)}}{{\text{y}}^{\text{2}}}} {\text{dy}}} \)
\({\text{ = }}\frac{{{\text{4πa}}}}{{{{\text{b}}^{\text{2}}}}}\int_{\text{0}}^{\text{b}} {\sqrt {{{\text{b}}^{\text{4}}}\left( {{\text{1 + }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{b}}^{\text{4}}}}}{{\text{y}}^{\text{2}}}} \right)} {\text{dy factor out }}} {{\text{b}}^{\text{4}}}\)
\({\text{ = }}\frac{{{\text{4πa}}}}{{{{\text{b}}^{\text{2}}}}}\int_{\text{0}}^{\text{b}} {{{\text{b}}^{\text{2}}}\sqrt {{\text{1 + }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{b}}^{\text{4}}}}}{{\text{y}}^{\text{2}}}} {\text{dy }}} \)
\({\text{ = 4πa}}\int_{\text{0}}^{\text{b}} {\sqrt {{\text{1 + }}\frac{{\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)}}{{{{\text{b}}^{\text{4}}}}}{{\text{y}}^{\text{2}}}} {\text{dy }}} \)
Using Pythagoras Theorem
Carry out trigonometric substitution –
\({\text{y = }}\frac{{{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{tan t}}\)
\({\text{dy = }}\frac{{{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{se}}{{\text{c}}^{\text{2}}}{\text{t dt}}\)
Also, for later converting back to \({\rm{y}}\)–
\({\text{tant = }}\frac{{{\text{y}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}\frac{{{\text{opp}}}}{{{\text{adj}}}}\)
\({\text{hyp = }}\sqrt {{\text{ad}}{{\text{j}}^{\text{2}}}{\text{ + op}}{{\text{p}}^{\text{2}}}} {\text{ = }}\sqrt {{{\left( {{{\text{b}}^{\text{2}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {{\text{y}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} } \right)}^{\text{2}}}} \)
\({\text{ = }}\sqrt {{{\text{b}}^{\text{4}}}{\text{ + }}{{\text{y}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} \)
\({\text{sect = }}\frac{{{\text{hyp}}}}{{{\text{adj}}}}{\text{ = }}\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + }}{{\text{y}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}\)
Change back to the original variable later, so leave the\({\rm{t}}\)limits blank.
\({\text{S = 4πa}}\int {\sqrt {{\text{1 + ta}}{{\text{n}}^{\text{2}}}{\text{t}}} } \frac{{{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{se}}{{\text{c}}^{\text{2}}}{\text{t dt}}\)
\({\text{ = }}\frac{{{\text{4πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int {\sqrt {{\text{se}}{{\text{c}}^{\text{2}}}{\text{t}}} } {\text{ se}}{{\text{c}}^{\text{2}}}{\text{t dt}}\)
\({\text{ = }}\frac{{{\text{4πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\int {{\text{se}}{{\text{c}}^{\text{3}}}} {\text{t dt}}\)
For the integration of \({\rm{sec t}}\),
\({\text{ = }}\frac{{{\text{4πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{\text{1}}}{{\text{2}}}{\text{(sec t tan t + ln|sec t + tan t|)}}} \right]\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{[sec t tan t + ln|sec t + tan t|]}}\)
Substituting the values
Convert back to \({\rm{y}}\) using the stuff from the trig substitution box above –
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + }}{{\text{y}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}\frac{{{\text{y}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + ln}}\left| {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + }}{{\text{y}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + }}\frac{{{\text{y}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}} \right|} \right]_{\text{0}}^{\text{b}}\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + (b}}{{\text{)}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}\frac{{{\text{(b)}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + ln}}\left| {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + (b}}{{\text{)}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + }}\frac{{{\text{(b)}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}} \right|} \right.\)
\(\left. {{\text{ - }}\left( {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + (0}}{{\text{)}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}\frac{{{\text{(0)}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + ln}}\left| {\frac{{\sqrt {{{\text{b}}^{\text{4}}}{\text{ + (0}}{{\text{)}}^{\text{2}}}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + }}\frac{{{\text{(0)}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}} \right|} \right)} \right]\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{{\text{b}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ + }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}{\text{ + ln}}\left| {\frac{{{\text{b}}\sqrt {{{\text{b}}^{\text{2}}}{\text{ + }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + }}\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}} \right|{\text{ - (0 + 0)}}} \right]\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{\sqrt {{{\text{a}}^{\text{2}}}} }}{{\text{b}}}\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}{\text{ + ln}}\left| {\frac{{\sqrt {{{\text{a}}^{\text{2}}}} }}{{\text{b}}}{\text{ + }}\frac{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}} \right|} \right]\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\left[ {\frac{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + ln}}\left| {\frac{{{\text{a + }}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}} \right|} \right]\)
\({\text{ = }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}\frac{{{\text{a}}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{{{\text{b}}^{\text{2}}}}}{\text{ + }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{ln}}\left| {\frac{{{\text{a + }}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}} \right|\)
\({\text{ = 2π}}{{\text{a}}^{\text{2}}}{\text{ + }}\frac{{{\text{2πa}}{{\text{b}}^{\text{2}}}}}{{\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{\text{ln}}\left| {\frac{{{\text{a + }}\sqrt {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} }}{{\text{b}}}} \right|\)
Therefore, the value for surface area is \({\rm{S = 2\pi }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}\frac{{{\rm{2\pi a}}{{\rm{b}}^{\rm{2}}}}}{{\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{\rm{ln}}\left| {\frac{{{\rm{a + }}\sqrt {{{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}} }}{{\rm{b}}}} \right|\).
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!