Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the exact length of the curve.

\({\rm{y = }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{x}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{lnx,1}} \le {\rm{x}} \le {\rm{2}}\)

Short Answer

Expert verified

The length of the curve\(\frac{{\rm{3}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{ln2}}}}{{\rm{2}}}\).

Step by step solution

01

To find the length of the curve.

The arc length formula is

\({\rm{L = }}\int_{\rm{a}}^{\rm{b}} {\sqrt {{\rm{1 + }}{{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)}^{\rm{2}}}} } {\rm{dx}}\)

It needs to be noted that\({\rm{y = }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{x}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{lnx,1}} \le {\rm{x}} \le {\rm{2}}\). Therefore

\({\rm{L = }}\int_{\rm{1}}^{\rm{2}} {\sqrt {{\rm{1 + }}{{\left( {\frac{{\rm{x}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2x}}}}} \right)}^{\rm{2}}}} } {\rm{dx}}\)

It should be noted that the derivative of \(\frac{{\rm{1}}}{{\rm{4}}}{{\rm{x}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{lnx}}\)is \(\frac{{\rm{x}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2x}}}}\)

\(\begin{aligned}{}{\rm{ = }}\int_{\rm{1}}^{\rm{2}} {\sqrt {{\rm{1 + }}\left( {\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{4}}{{\rm{x}}^{\rm{2}}}}}} \right)} } {\rm{dx}}\\{\rm{ = }}\int_{\rm{1}}^{\rm{2}} {\sqrt {\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{4}}{{\rm{x}}^{\rm{2}}}}}} } {\rm{dx}}\\{\rm{ = }}\int_{\rm{1}}^{\rm{2}} {\sqrt {{{\left( {\frac{{\rm{x}}}{{\rm{2}}}} \right)}^{\rm{2}}}{\rm{ + 2 \times }}\frac{{\rm{x}}}{{\rm{2}}}{\rm{ \times }}\frac{{\rm{1}}}{{{\rm{2x}}}}{\rm{ + }}{{\left( {\frac{{\rm{1}}}{{{\rm{2x}}}}} \right)}^{\rm{2}}}} } {\rm{dx}}\end{aligned}\)

02

Expand the equation.

\(\begin{aligned}{}{\rm{L = }}\int_{\rm{1}}^{\rm{2}} {\sqrt {{{\left( {\frac{{\rm{x}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2x}}}}} \right)}^{\rm{2}}}} } {\rm{dx}}\\{\rm{ = }}\int_{\rm{1}}^{\rm{2}} {\frac{{\rm{x}}}{{\rm{2}}}} {\rm{ + }}\frac{{\rm{1}}}{{{\rm{2x}}}}{\rm{dx}}\\{\rm{ = }}\left( {\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{lnx}}}}{{\rm{2}}}} \right)_{\rm{1}}^{\rm{2}}\\{\rm{ = }}\left( {\frac{{{{\rm{2}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{ln2}}}}{{\rm{2}}}} \right){\rm{ - }}\left( {\frac{{{{\rm{1}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{ln1}}}}{{\rm{2}}}} \right)\\{\rm{ = }}\left( {{\rm{1 + }}\frac{{{\rm{ln2}}}}{{\rm{2}}}} \right){\rm{ - }}\left( {\frac{{\rm{1}}}{{\rm{4}}}{\rm{ + 0}}} \right)\\{\rm{L = }}\frac{{\rm{3}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{ln2}}}}{{\rm{2}}}\end{aligned}\)

Therefore, the length of the curve\(\frac{{\rm{3}}}{{\rm{4}}}{\rm{ + }}\frac{{{\rm{ln2}}}}{{\rm{2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free