Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the exact area of the surface obtained by rotating the curve about \({\rm{X}}\)- axis.

\(y = \) \(\frac{{{x^3}}}{6} + \frac{1}{{2x}},\;\;\;\frac{1}{2} \le 5x \le 1\)

Short Answer

Expert verified

The exact area of the surface obtained by rotating the curve about \({\rm{X}}\)- axis is\( - \frac{{263\pi }}{{256}}\).

Step by step solution

01

Definition of area of the surface.

The space occupied by the object's surface is referred to as the surface area.

02

Given parameters.

The given parameters are: \(y = \) \(\frac{{{x^3}}}{6} + \frac{1}{{2x}},\;\;\;\frac{1}{2} \le 5x \le 1\)

03

Finding the exact surface area.

Consider the given equation and simplify,

To find the surface area of the curve when\(f(x)\)is rotated about the\(x\)-axis

Surface area,

\(\begin{aligned}{} &= \int_{1/2}^1 2 \pi y\sqrt {1 + {{\left( {{y^\prime }} \right)}^2}} dx\\ &= 2\pi \int_{1/2}^1 f (x)\sqrt {1 + {{\left( {{f^\prime }(x)} \right)}^2}} dx{f^\prime }(x)\\ &= \underbrace {\frac{{6x\left( {4{x^3}} \right) - \left( {{x^4} + 3} \right)(6)}}{{{{(6x)}^2}}}}_{{\rm{Using Quotient Rule }}}\\ &= \frac{{x\left( {4{x^3}} \right) - \left( {{x^4} + 3} \right)}}{{6{x^2}}}\\ &= \frac{{4{x^4} - {x^4} - 3}}{{6{x^2}}} &= \frac{{{x^4} - 1}}{{2{x^2}}}\end{aligned}\)

Substitute \(f(x)\)and \({f^\prime }(x)\),

To get

\(\begin{aligned}{} &= 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {1 + {{\left( {\frac{{{x^4} - 1}}{{2{x^2}}}} \right)}^2}} dx\\ &= 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {1 + \frac{{{{\left( {{x^4} - 1} \right)}^2}}}{{4{x^4}}}} dx\\ &= 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {1 + \frac{{{x^8} - 2{x^4} + 1}}{{4{x^4}}}} dx\end{aligned}\)

04

Finding the exact surface area.

Evaluating further,

\(\begin{aligned}{} &- 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {\frac{{{x^8} + 4{x^4} - 2{x^4} + 1}}{{4{x^4}}}} dx\\ &- 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {\frac{{{x^8} + 2{x^4} + 1}}{{4{x^4}}}} dx\\ &- 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \sqrt {\frac{{{{\left( {{x^4} + 1} \right)}^2}}}{{4{x^4}}}} dx\\ &- 2\pi \int_{1/2}^1 {\left( {\frac{{{x^4} + 3}}{{6x}}} \right)} \left( {\frac{{{x^4} + 1}}{{2{x^2}}}} \right)dx\\ &- 2\pi \int_{1/2}^1 {\frac{{{x^8} + 4{x^4} + 3}}{{12{x^3}}}} dx\end{aligned}\)

\(\begin{aligned}{} &- 2\pi \int_{1/2}^1 {\frac{{{x^8}}}{{12{x^3}}}} + \frac{{4{x^4}}}{{12{x^3}}} + \frac{3}{{12{x^3}}}dx\\ &- 2\pi \int_{1/2}^1 {\frac{{{x^5}}}{{12}}} + \frac{x}{3} + \frac{{{x^{ - 3}}}}{4}dx\\ &- 2\pi \left( {\frac{{{x^6}}}{{72}} + \frac{{{x^2}}}{6} - \frac{{{x^{ - 2}}}}{8}} \right)_{1/2}^1\\ &- 2\pi \left\{ {\left( {\frac{1}{{72}} + \frac{1}{6} - \frac{1}{8}} \right) - \left( {\frac{1}{{64 \times 72}} + \frac{1}{{24}} - \frac{4}{8}} \right)} \right\}\\ &- \frac{{263\pi }}{{256}}\end{aligned}\)

Hence, the required surface area is \( - \frac{{263\pi }}{{256}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free