Chapter 4: Q8E (page 253)
(a) given an initial approximation \({{\bf{x}}_{\bf{1}}}\) to a root of the equation \({\bf{f}}\left( {\bf{x}} \right){\bf{ = 0}}\), explain geometrically, with a diagram, how the second approximation \({{\bf{x}}_{\bf{2}}}\) in newton’s method is obtained.
b) Write an expression for \({{\bf{x}}_{\bf{2}}}\) in terms of \({{\bf{x}}_{\bf{1}}}\), \({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}} \right)\) and \({\bf{f'}}\left( {{{\bf{x}}_{\bf{1}}}} \right)\).
c) Write the expression for \({{\bf{x}}_{{\bf{n + 1}}}}\) in terms of \({{\bf{x}}_{\bf{n}}}\), \({\bf{f}}\left( {{{\bf{x}}_{\bf{n}}}} \right)\) and \({\bf{f'}}\left( {{{\bf{x}}_{\bf{n}}}} \right)\).
d) Under what circumstance is newton’s method likely to fail or to work very slowly?
Short Answer
(a) The geometrical representation for the second approximation is,
(b)
The required expression is, \({x_2} = {x_1} - \frac{{f\left( {{x_1}} \right)}}{{f'\left( {{x_1}} \right)}}\).
(c)
The required expression is,\({x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}\).
(d)
If the scale is too high it means the newton method is failing or slowing down.