Chapter 4: Q8E (page 222)
(a) Determine the intervals on which the function \(f(x) = {x^2}\ln x\) is increasing or decreasing.
(b) Determine the local maximum and minimum values of \(f(x) = {x^2}\ln x\).
(c) Determine the intervals of concavity and the inflection points of \(f(x) = {x^2}\ln x\).
Short Answer
(a) The function \(f(x)\) is increasing on \(\left( {\frac{1}{{\sqrt e }},\infty } \right)\) and is decreasing on. \(\left( {0,\frac{1}{{\sqrt e }}} \right)\).
(b) There is no local maximum and the local minimum is, \(f\left( {\frac{1}{{\sqrt e }}} \right) = \frac{{ - 1}}{{2e}}\).
(c) The \(f(x)\) is concave upward on \(\left( {{e^{\frac{{ - 3}}{2}}}, + \infty } \right)\) and concave downward on \(\left( {0,{e^{\frac{{ - 3}}{2}}}} \right)\) and the inflection point is \(\left( {{e^{\frac{{ - 3}}{2}}}, - 0.0747} \right)\).