Now here we solve our question,
\(f'\left( x \right) = \frac{d}{{dx}}\left( {f\left( x \right)} \right) = \frac{d}{{dx}}\left( {x + 6} \right) = 1\)
\(g'\left( x \right) = \frac{d}{{dx}}\left( {g\left( x \right)} \right) = \frac{d}{{dx}}\left( {x + 1} \right) = 1\)
\( \Rightarrow f'\left( x \right) = g'\left( x \right)\) \(\forall x \in \left( {0,1} \right)\) or for \(0 < n < 1\).
But \(f\left( x \right) \ne g\left( x \right)\) for \(0 < n < 1\).
Because \(0 < x = \frac{1}{2} < 1\)
\(f\left( {\frac{1}{2}} \right) = \frac{1}{2} + 6 = \frac{{13}}{2}\)
\(g\left( {\frac{1}{2}} \right) = \frac{1}{2} + 1 = \frac{3}{2}\)
\(f\left( {\frac{1}{2}} \right) \ne g\left( {\frac{1}{2}} \right)\) at \(x = \frac{1}{2}\)
\(\therefore f\left( x \right) \ne g\left( x \right)\)for \(0 < n < 1\).
Hence our statement is false.