Given the function is,
\[f\left( x \right) = 3\sqrt x - 2\sqrt[3]{x}\]
Rewriting the function
\[f\left( x \right) = 3{x^{{1 \mathord{\left/
{\vphantom {1 2}} \right.
\kern-\nulldelimiterspace} 2}}} - 2{x^{{1 \mathord{\left/
{\vphantom {1 3}} \right.
\kern-\nulldelimiterspace} 3}}}\]
For finding antiderivative using Theorem 1 and the standard formula:
\[\begin{array}{l}F\left( x \right) = 3\left( {\frac{{{x^{\left( {{1 \mathord{\left/
{\vphantom {1 2}} \right.
\kern-\nulldelimiterspace} 2}} \right) + 1}}}}{{\left( {{1 \mathord{\left/
{\vphantom {1 2}} \right.
\kern-\nulldelimiterspace} 2}} \right) + 1}}} \right) - 2\left( {\frac{{{x^{\left( {{1 \mathord{\left/
{\vphantom {1 3}} \right.
\kern-\nulldelimiterspace} 3}} \right) + 1}}}}{{\left( {{1 \mathord{\left/
{\vphantom {1 3}} \right.
\kern-\nulldelimiterspace} 3}} \right) + 1}}} \right) + C\\F\left( x \right) = 3\left( {\frac{{{x^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}}} \right) - 2\left( {\frac{{{x^{{4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}}}}}{{{4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}}}} \right) + C\\F\left( x \right) = 2{x^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}} - \frac{3}{2}{x^{{4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}}} + C\end{array}\]
The most general antiderivative of the function is \[F\left( x \right) = 2{x^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}} - \frac{3}{2}{x^{{4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}}} + C\] .