Chapter 4: Q5E (page 222)
(a) Determine the intervals on which the function \(x = \frac{\pi }{4},\;x = \frac{{5\pi }}{4}\) on \((0,\;2\pi )\) is increasing or decreasing.
(b) Determine the local maximum and minimum values of \(f(x) = \sin x + \cos x\).
(c) Determine the intervals of concavity and the inflection points of\(f(x) = \sin x + \cos x\).
Short Answer
(a) The function \(f(x)\) is increasing on \(\left( {0,\;\frac{\pi }{4}} \right) \cup \left( {\frac{{5\pi }}{4},\;2\pi } \right)\) and decreasing on \(\left( {\frac{\pi }{4},\;\frac{{5\pi }}{4}} \right)\).
(b) The local maximum is \(f\left( {\frac{\pi }{4}} \right) = \sqrt 2 \) and local minimum is \(f\left( {\frac{{5\pi }}{4}} \right) = - \sqrt 2 \).
(c) The function \(f(x)\) is concave upward on \(\left( {\frac{{3\pi }}{4},\frac{{7\pi }}{4}} \right)\), concave downward on \(\left( {0,\frac{{3\pi }}{4}} \right) \cup \left( {\frac{{7\pi }}{4},2\pi } \right)\) and the inflection points are \(\left( {\frac{{3\pi }}{4},0} \right)\) and \(\left( {\frac{{7\pi }}{4},0} \right)\).