(c)
By induction hypothesis, to show the inequality is true when\(n = 1\).
When\(n = 1,f(x) = {e^x} - (1 + x)\)
In part (a) it already proved that the\({e^x} \ge 1 + x\)for all\(x \ge 0\).
So, the inequality is hold for\(n = 1\).
Assume that the inequality is true for any positive integer\(n\).
So,\({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\).
Next prove the inequality is true for positive integer\(n + 1\).
The function is\(f(x) = {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)\).
Obtain the derivative of \(f(x)\).
\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)} \right)\\{f^\prime }(x) &= {e^x} - \left( {0 + 1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\\{f^\prime }(x) &= {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\end{aligned}\)
As per assumption \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)
Substitute 0 in \(f(x)\).
\(\begin{aligned}{l}f(0) &= {e^0} - \left( {1 + 0 + \frac{{{0^2}}}{{2!}} + \ldots \ldots + \frac{{{0^{n + 1}}}}{{(n + 1)!}}} \right)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)
Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)
Thus, it is proved that \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\) for all \(x \ge 0\).