Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Show that \({e^x} \ge 1 + x\) for \(x \ge 0\).

(b) Deduce that \({e^x} \ge 1 + x + \frac{1}{2}{x^2}\) for \(x \ge 0\).

(c) Use mathematical induction to prove that for \(x \ge 0\) and any positive integer \(n\),

\({e^x} \ge 1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}\)

Short Answer

Expert verified

(a) It is proved that \({f^\prime }(x) = {e^x} - 1\).

(b) The resultant answer is \({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\).

(c) It is proved that for \(x \ge 0\) and any positive integer n, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\).

Step by step solution

01

Given data

The given function is \({e^x} \ge 1 + x\).

02

Concept of Differentiation

Differentiation is a method of finding the derivative of a function. Differentiation is a process, where we find the instantaneous rate of change in function based on one of its variables.

03

Substitute the value

(a)

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - (1 + x)} \right)\\{f^\prime }(x) &= {e^x} - (0 + 1)\\{f^\prime }(x) &= {e^x} - 1\end{aligned}\)

Since \({e^x}\) is an increasing function, \({e^x} \ge 1\) for all \(x \ge 0\),

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - (1 + 0)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is,

\(\begin{aligned}{c}{e^x} - (1 + x) &\ge 0\\{e^x} &\ge 1 + x\end{aligned}\)

Thus, it is proved that \({e^x} \ge 1 + x\) for all \(x \ge 0\).

04

Simplify the expression

(b)

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right)} \right)\\{f^\prime }(x) &= {e^x} - \left( {0 + 1 + \frac{1}{2}(2x)} \right)\\{f^\prime }(x) &= {e^x} - (1 + x)\end{aligned}\)

From part (a)\({e^x} \ge 1 + x\)

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - \left( {1 + 0 + \frac{1}{2}{{(0)}^2}} \right)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is,\({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\)

Thus, it is proved that \({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\) for all \(x \ge 0\).

05

Simplify the expression

(c)

By induction hypothesis, to show the inequality is true when\(n = 1\).

When\(n = 1,f(x) = {e^x} - (1 + x)\)

In part (a) it already proved that the\({e^x} \ge 1 + x\)for all\(x \ge 0\).

So, the inequality is hold for\(n = 1\).

Assume that the inequality is true for any positive integer\(n\).

So,\({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\).

Next prove the inequality is true for positive integer\(n + 1\).

The function is\(f(x) = {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)\).

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)} \right)\\{f^\prime }(x) &= {e^x} - \left( {0 + 1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\\{f^\prime }(x) &= {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\end{aligned}\)

As per assumption \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - \left( {1 + 0 + \frac{{{0^2}}}{{2!}} + \ldots \ldots + \frac{{{0^{n + 1}}}}{{(n + 1)!}}} \right)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)

Thus, it is proved that \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\) for all \(x \ge 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free