Apply the extreme values of the given interval and the critical number in the given function.
Substitute,\(T = 0 \to V(T)\).
\(\begin{aligned}{c}V(0) &= 999.87 - 0.06426(0) + 0.0085043{(0)^2} - 0.0000679{(0)^3}\\ &= 999.87\end{aligned}\)
Substitute,\(T &= 3.9665 \to V(T)\).
\(\begin{aligned}{c}V(3.9665) &= 999.87 - 0.06426(3.9665) + 0.0085043{(3.9665)^2} - 0.0000679{(3.9665)^3}\\ &= 999.74\end{aligned}\)
Substitute,\(T = 30 \to V(T)\).
\(\begin{aligned}{c}V(30) &= 999.87 - 0.06426(30) + 0.0085043{(30)^2} - 0.0000679{(30)^3}\\ \approx 1003.8\end{aligned}\)
Observe that the volume is minimum at\(T = {3.9665^^\circ }{\rm{C}}\)and maximum at\(T = {30^^\circ }{\rm{C}}\).
Recall the formula, Density\( = \frac{{{\rm{ Mass }}}}{{{\rm{ Volume }}}}\).
Note that the density is maximum when the volume is minimum.
The volume is minimum at\(T = {3.9665^^\circ }{\rm{C}}\).
Therefore, the maximum density of water is occurs at \(T = {3.9665^^\circ }{\rm{C}}\).