Label the figure as follows
![]()

The lengths of the diagonal parts are related as
\(\begin{aligned}{c}{a^2} &= {d^2} + {f^2}\\d &= \sqrt {{a^2} - {f^2}} \\{b^2} &= {e^2} + {f^2}\\e &= \sqrt {{b^2} - {f^2}} \end{aligned}\)
The area of the kite is the sum of area of the four triangles given by
\(\begin{array}{c}A &= df + ef\\ &= f\sqrt {{a^2} - {f^2}} + f\sqrt {{b^2} - {f^2}} \end{array}\)
From equation (I), the area can be maximized by
\(\begin{aligned}{c}{\frac{{dA}}{{df}}_{f = {f_{\max }}}} &= 0\\\frac{d}{{df}}{\left( {f\sqrt {{a^2} - {f^2}} + f\sqrt {{b^2} - {f^2}} } \right)_{f = {f_{\max }}}} &= 0\\\sqrt {{a^2} - f_{\max }^2} - \frac{{f_{\max }^2}}{{\sqrt {{a^2} - f_{\max }^2} }} + \sqrt {{b^2} - f_{\max }^2} - \frac{{f_{\max }^2}}{{\sqrt {{b^2} - f_{\max }^2} }} &= 0\\\left( {{a^2} - 2f_{\max }^2} \right)\sqrt {{b^2} - f_{\max }^2} = - \left( {{b^2} - 2f_{\max }^2} \right)\sqrt {{a^2} - f_{\max }^2} \end{aligned}\)
Square both sides to get
\(\begin{aligned}{c}\left( {{a^4} - 4{a^2}f_{\max }^2 + 4f_{\max }^4} \right)\left( {{b^2} - f_{\max }^2} \right) &= \left( {{b^4} - 4{b^2}f_{\max }^2 + 4f_{\max }^4} \right)\left( {{a^2} - f_{\max }^2} \right)\\{a^4}{b^2} - {a^4}f_{\max }^2 - 4{a^2}{b^2}f_{\max }^2 + 4{a^2}f_{\max }^4 + 4{b^2}f_{\max }^4 - 4f_{\max }^6 &= {b^4}{a^2} - {b^4}f_{\max }^2 - 4{b^2}{a^2}f_{\max }^2 + 4{b^2}f_{\max }^4 + 4{a^2}f_{\max }^4 - 4f_{\max }^6\\f_{\max }^2\left( {{a^4} - {b^4}} \right) &= {a^4}{b^2} - {b^4}{a^2}\\f_{\max }^2\left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right) &= {a^2}{b^2}\left( {{a^2} - {b^2}} \right)\end{aligned}\)
If \({a^2} \ne {b^2}\)
\(\begin{aligned}{c}f_{\max }^2 &= \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}\\{f_{\max }} &= \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\end{aligned}\)
The other lengths are
\(\begin{aligned}{c}d &= \sqrt {{a^2} - f_{\max }^2} \\ &= \sqrt {{a^2} - \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}} \\ &= \frac{{{a^2}}}{{\sqrt {{a^2} + {b^2}} }}\end{aligned}\)
and
\(\begin{aligned}{c}e &= \sqrt {{b^2} - f_{\max }^2} \\ &= \sqrt {{b^2} - \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}} \\ &= \frac{{{b^2}}}{{\sqrt {{a^2} + {b^2}} }}\end{aligned}\)
Thus, the diagonal lengths are
\(\begin{array}{c}2f = \frac{{2ab}}{{\sqrt {{a^2} + {b^2}} }}\\d + e = \sqrt {{a^2} + {b^2}} \end{array}\)