Step 3: Finding the most general antiderivative of the function
Given the function is,
\(f\left( x \right) = \sqrt(3){{{x^2}}} + x\sqrt x \)
Rewriting the function:
\(\begin{aligned}{l}f\left( x \right) = {x^{{2 \mathord{\left/
{\vphantom {2 3}} \right.
\kern-\nulldelimiterspace} 3}}} + {x^{1 + \left( {{1 \mathord{\left/
{\vphantom {1 2}} \right.
\kern-\nulldelimiterspace} 2}} \right)}}\\f\left( x \right) = {x^{{2 \mathord{\left/
{\vphantom {2 3}} \right.
\kern-\nulldelimiterspace} 3}}} + {x^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}}\end{aligned}\)
For finding antiderivative using Theorem 1 and the standard formula:
\(\begin{aligned}{l}F\left( x \right) = \frac{{{x^{\left( {{2 \mathord{\left/
{\vphantom {2 3}} \right.
\kern-\nulldelimiterspace} 3}} \right) + 1}}}}{{{2 \mathord{\left/
{\vphantom {2 {3 + 1}}} \right.
\kern-\nulldelimiterspace} {3 + 1}}}} + \frac{{{x^{\left( {{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}} \right) + 1}}}}{{{3 \mathord{\left/
{\vphantom {3 {2 + 1}}} \right.
\kern-\nulldelimiterspace} {2 + 1}}}} + C\\F\left( x \right) = \left( {\frac{{{x^{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}}}}{{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}}} \right) + \left( {\frac{{{x^{{5 \mathord{\left/
{\vphantom {5 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{{{5 \mathord{\left/
{\vphantom {5 2}} \right.
\kern-\nulldelimiterspace} 2}}}} \right) + C\\F\left( x \right) = \frac{{3{x^{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}}}}{5} + \frac{{2{x^{{5 \mathord{\left/
{\vphantom {5 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{5} + C\end{aligned}\)
The most general antiderivative of the function is \(F\left( x \right) = \frac{{3{x^{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}}}}{5} + \frac{{2{x^{{5 \mathord{\left/
{\vphantom {5 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{5} + C\).