Chapter 4: Q4E (page 222)
(a) Determine the intervals on which the function \(f(x) = \frac{x}{{{x^2} + 1}}\) is increasing or decreasing.
(b) Determine the local maximum and minimum values of \(f(x) = \frac{x}{{{x^2} + 1}}\).
(c) Determine the intervals of concavity and the inflection points of\(f(x) = \frac{x}{{{x^2} + 1}}\).
Short Answer
(a) The function \(f(x)\) is increasing on \(( - 1,\;1)\) and decreasing on \(( - \infty ,\;1) \cup (1,\; + \infty )\).
(b) The local maximum is \(f(1) = \frac{1}{2}\) and the local minimum is \(f( - 1) = \frac{{ - 1}}{2}\).
(c) The function \(f(x)\) is concave upward on \(( - \sqrt 3 ,\;0) \cup (\sqrt 3 ,\;\infty ),\;f(x)\) is concave downward on \(( - \infty , - \sqrt 3 ) \cup (0,\sqrt 3 )\) and the inflection points are\((0,\;0),\;\left( {\sqrt 3 ,\,\frac{{\sqrt 3 }}{4}} \right),\;\left( { - \sqrt 3 ,\;\frac{{ - \sqrt 3 }}{4}} \right)\).