To satisfy the third condition of the theorem,\(f(a)\)must be equal to\(f(b)\).
From the given interval, it is observed that\(a = \frac{\pi }{8};\;b = \frac{{7\pi }}{8}\).
Substitute, \(\frac{\pi }{8} \to x\)in\(f(x)\).
\(\begin{aligned}{c}f\left( {\frac{\pi }{8}} \right) = \cos 2\left( {\frac{\pi }{8}} \right)\\ = \cos \frac{\pi }{4}\\ = \frac{1}{{\sqrt 2 }}\end{aligned}\)
Substitute,\(\frac{{7\pi }}{8}\)for\(x\)in\(f(x)\).
\(\begin{aligned}{c}f\left( {\frac{{7\pi }}{8}} \right) = \cos 2\\ = \cos \frac{{7\pi }}{4}\\ = \frac{1}{{\sqrt 2 }}\end{aligned}\)
Hence,\(f\left( {\frac{\pi }{8}} \right) = f\left( {\frac{{7\pi }}{8}} \right)\), that is at both points\(f(x)\)attains same functional values.
Therefore,\(f(a) = f(b)\).
Thus, the function \(f(x)\)satisfies the conditions of Rolle's Theorem.