Find the constant by putting \(t = 10\).
\(\begin{aligned}{c}{c_2} &= - 9\left( {10} \right) + 4.5{\left( {10} \right)^2} - 10\\ &= - 9\left( {10} \right) + 4.5{\left( {10} \right)^2} - 10\\ &= - 90 + 45 - 10\\ &= - 100 + 45\\ &= - 55\end{aligned}\)
Then,
\(a = \left\{ \begin{aligned}{l}{\rm{ }} - 9t + 4.5{t^2} + 10{\rm{ 0}} \le {\rm{t}} \le {\rm{10}}\\{\rm{ - 55 t > 0}}\end{aligned} \right.\)
Position is the \({s_0} = 500\).
Here we differentiate v.
\(\begin{aligned}{c}{v^1} &= - 9t + 4.5{t^2} + 10\\v'' &= - 9\frac{{{t^2}}}{2} + 0.45\frac{{{t^3}}}{3} - 10t + {s_0}\\ &= - 4.5{t^2} + 0.15{t^3} - 10t + 500\end{aligned}\)
Let \(u = - 55\)
\(u' = - 55t + {c_3}\)
We arrange it in this form,
\(a = \left\{ \begin{aligned}{l}{\rm{ }} - 4.5{t^2} + 0.15{t^3} - 10t + 500{\rm{ 0}} \le {\rm{t}} \le {\rm{10}}\\{\rm{ }} - 55t + {c_3}{\rm{ t > 0}}\end{aligned} \right.\)
After 10 seconds, the raindrop position is,
\(\begin{aligned}{c}s\left( {10} \right) &= - 4.5{\left( {10} \right)^2} + 0.15{\left( {10} \right)^3} - 10\left( {10} \right) + 500\\ &= - 4.5 \times 100 + 0.15 \times 1000 - 100 + 500\\ &= 100m\end{aligned}\)
Raindrops fall the last \(100m\) when the velocity is \(55\frac{m}{s}\).
\(\begin{aligned}{c}100 &= 55t\\t &= \frac{{100}}{{55}}\\ &\approx 1.82\end{aligned}\)
It takes 10 seconds to fall 400m, then about 1.82 seconds to fall the last 100 m.
So, it takes 11.82 seconds for the raindrop to hit the ground.