Chapter 4: Q43E (page 255)
In \(\Delta ABC\), \(D\) lies on \(AB\), \(\left| {CD} \right| = 5{\rm{ cm}}\), \(\left| {AD} \right| = 4{\rm{ cm}}\), \(\left| {BD} \right| = 4{\rm{ cm}}\), and \({\rm{CD}} \bot {\rm{AB}}\). Where should a point \(P\) be chosen on \(CD\) so that the sum \(\left| {PA} \right| + \left| {PB} \right| + \left| {PC} \right|\) is a minimum? What if \(\left| {CD} \right| = 2{\rm{ cm}}\)?
Short Answer
Thus, the minimum value of sum is \(11.93\).