Substitute \(h = r + x\) and \({R^2} = {r^2} - {x^2}\) in the volume of cone gives,
\(\begin{aligned}{c}V = \frac{1}{3}\pi {r^2}h\\ = \frac{1}{3}\pi \left( {{r^2} - {x^2}} \right)\left( {r + x} \right)\\ = \frac{1}{3}\pi \left( {{r^3} + {r^2}x - r{x^2} - {x^3}} \right)\end{aligned}\)
Now, differentiate the above volume as follows,
\(\begin{aligned}{c}\frac{{dV}}{{dx}} = \frac{d}{{dx}}\left( {\frac{1}{3}\pi \left( {{r^3} + {r^2}x - r{x^2} - {x^3}} \right)} \right)\\ = \frac{1}{3}\pi \left( {0 + {r^2} - 2rx - 3{x^2}} \right)\\ = \frac{1}{3}\pi \left( {{r^2} - 2rx - 3{x^2}} \right)\end{aligned}\)
Again, differentiate the volume gives,
\(\frac{{{d^2}V}}{{d{x^2}}} = \frac{1}{3}\pi \left( { - 2r - 6x} \right)\)