The slope of the tangent to the curve is
\(\frac{{dy}}{{dx}} = 120{x^2} - 15{x^4}\)
From equation (1), the slop is maximum for
\(\begin{array}{c}{\frac{{{d^2}y}}{{d{x^2}}}_{x = {x_{\max }}}} = 0\\{\left( {240x - 60{x^3}} \right)_{x = {x_{\max }}}} = 0\\240{x_{\max }} = 60x_{\max }^3\\{x_{\max }} = 4\end{array}\)
Check equation (2)
\(\begin{array}{c}{\frac{{{d^3}y}}{{d{x^3}}}_{x = {x_{\max }}}} = 240 - 180x_{\max }^2\\ = 240 - 180 \times {4^2}\\ = - 2640\\ < 0\end{array}\)
The maxima condition satisfies. The corresponding \(y\) value is:
\(\begin{array}{c}{y_{\max }} = 1 + 40x_{\max }^3 - 3x_{\max }^5\\ = 1 + 40 \times {4^3} - 3 \times {4^5}\\ = - 511\end{array}\)
Thus, the slope maximum is at the point\(\left( {4, - 511} \right)\).