Here we have,\(v\left( t \right) = 1.5\sqrt t \).
To find the position of the particle, we have to find general anti-derivative of velocity.
General anti-derivative of\(v\left( t \right) = 1.5\sqrt t \)I s
\(\begin{aligned}{c}s\left( t \right) &= 1.5\frac{{{t^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{{{\raise0.7ex\hbox{$3$} \!\mathord{\left/
{\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}} + C\\ &= 1.5\frac{{{t^{{3 \mathord{\left/
{\vphantom {3 2}} \right.
\kern-\nulldelimiterspace} 2}}}}}{{1.5}} + C\end{aligned}\)
Hence, \(s\left( t \right) = t\sqrt t + C\).