Given the function is,
\(f\left( x \right) = 7{x^{{2 \mathord{\left/
{\vphantom {2 5}} \right.
\kern-\nulldelimiterspace} 5}}} + 8{x^{{{ - 4} \mathord{\left/
{\vphantom {{ - 4} 5}} \right.
\kern-\nulldelimiterspace} 5}}}\)
For finding antiderivative using Theorem 1 and the standard formula:
\(\begin{aligned}{l}F\left( x \right) = 7\left( {\frac{{{x^{\left( {{2 \mathord{\left/
{\vphantom {2 5}} \right.
\kern-\nulldelimiterspace} 5}} \right) + 1}}}}{{\left( {{2 \mathord{\left/
{\vphantom {2 5}} \right.
\kern-\nulldelimiterspace} 5}} \right) + 1}}} \right) + 8\left( {\frac{{{x^{\left( {{{ - 4} \mathord{\left/
{\vphantom {{ - 4} 5}} \right.
\kern-\nulldelimiterspace} 5}} \right) + 1}}}}{{\left( {{{ - 4} \mathord{\left/
{\vphantom {{ - 4} 5}} \right.
\kern-\nulldelimiterspace} 5}} \right) + 1}}} \right) + C\\F\left( x \right) = 7\left( {\frac{{{x^{{7 \mathord{\left/
{\vphantom {7 5}} \right.
\kern-\nulldelimiterspace} 5}}}}}{{{7 \mathord{\left/
{\vphantom {7 5}} \right.
\kern-\nulldelimiterspace} 5}}}} \right) + 8\left( {\frac{{{x^{{1 \mathord{\left/
{\vphantom {1 5}} \right.
\kern-\nulldelimiterspace} 5}}}}}{{{1 \mathord{\left/
{\vphantom {1 5}} \right.
\kern-\nulldelimiterspace} 5}}}} \right) + C\\F\left( x \right) = 5{x^{{7 \mathord{\left/
{\vphantom {7 5}} \right.
\kern-\nulldelimiterspace} 5}}} + 40{x^{{1 \mathord{\left/
{\vphantom {1 5}} \right.
\kern-\nulldelimiterspace} 5}}} + C\end{aligned}\)
The most general antiderivative of the function is \(F\left( x \right) = 5{x^{{7 \mathord{\left/
{\vphantom {7 5}} \right.
\kern-\nulldelimiterspace} 5}}} + 40{x^{{1 \mathord{\left/
{\vphantom {1 5}} \right.
\kern-\nulldelimiterspace} 5}}} + C\).