Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Theorem 5 to prove the identity

\(2{\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\), \(x \ge 0\).

Short Answer

Expert verified

The identity \(2{\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\) if \(x \ge 0\) is proved.

Step by step solution

01

Given data

The functions is \(f(x) = 2{\sin ^{ - 1}}x - {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\).

02

Use theorem

"If \({f^\prime }(x) = 0\) for all \(x\) in an interval \((a,\;b)\), then \(f\) is constant on \((a,\;b)\)."

03

Differentiate \(f(x)\) with respect to \(x\)

Consider the function \(f(x) = 2{\sin ^{ - 1}}x - {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\) as follows:

Differentiate \(f(x)\) with respect to \(x\) as follows:

\(\begin{aligned}{c}{f^\prime }(x) &= \frac{2}{{\sqrt {1 - {x^2}} }} - \left( {\frac{{ - 1}}{{\sqrt {1 - {{\left( {1 - 2{x^2}} \right)}^2}} }}} \right)\frac{d}{{dx}}\left( {1 - 2{x^2}} \right)\\ &= \frac{2}{{\sqrt {1 - {x^2}} }} + \frac{1}{{\sqrt {1 - 1 - 4{x^4} + 4{x^2}} }}( - 4x)\\ &= \frac{2}{{\sqrt {1 - {x^2}} }} - \frac{{4x}}{{\sqrt { - 4{x^4} + 4{x^2}} }}\\ &= \frac{2}{{\sqrt {1 - {x^2}} }} - \frac{{4x}}{{2x\sqrt {1 - {x^2}} }}\end{aligned}\)

Simplify further as follows:

\(\begin{aligned}{c}{f^\prime }(x) &= \frac{2}{{\sqrt {1 - {x^2}} }} - \frac{2}{{\sqrt {1 - {x^2}} }}\\ &= 0\end{aligned}\)

Hence by the above theorem for \(x \ge 0\), the function \(f(x)\) is constant as follows:

\(\begin{aligned}{c}f(x) &= C\\2{\sin ^{ - 1}}x - {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right) &= C\end{aligned}\)

04

Evaluate the constant \(C\)

Evaluate the constant \(C\) by substituting \(x = 0\) as follows:

\(\begin{aligned}{c}2{\sin ^{ - 1}}(0) - {\cos ^{ - 1}}\left( {1 - 2{{(0)}^2}} \right) &= C\\2{\sin ^{ - 1}}(0) - {\cos ^{ - 1}}(1) &= C\\2(0) - 0 &= C\\C &= 0\end{aligned}\)

Therefore, for \(x \ge 0\), the function \(f(x)\) becomes as follows:

\(\begin{aligned}{c}2{\sin ^{ - 1}}x - {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right) &= 0\\2{\sin ^{ - 1}}x &= {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\end{aligned}\)

Thus, \(2{\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\) if \(x \ge 0\).

Hence, the identity \(2{\sin ^{ - 1}}x = {\cos ^{ - 1}}\left( {1 - 2{x^2}} \right)\) if \(x \ge 0\) is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free