Given in the question.
\(A = \frac{R}{i}\left( {1 - {{\left( {1 + i} \right)}^{ - n}}} \right)\)
\(A = \$ 18000\)
\(R = \$ 375\)
Since payments will be made after year and there are 12 months in years so there must be a total of 60 payments.
\(n = 60\)
i = interest rate
Substituting the values into the equation
\(18000 = \frac{{375}}{i}\left( {1 - {{\left( {1 + i} \right)}^{ - 60}}} \right)\)
According to the question replacing i by x in the equation
\(\begin{aligned}{c}18000 &= \frac{{375}}{x}\left( {1 - {{\left( {1 + x} \right)}^{ - 60}}} \right)\\18000x &= 375\left( {1 - {{\left( {1 + x} \right)}^{ - 60}}} \right)\\48x &= \left( {1 - \frac{1}{{{{\left( {1 + x} \right)}^{60}}}}} \right)\\48x &= \frac{{{{\left( {1 + x} \right)}^{60}} - 1}}{{{{\left( {1 + x} \right)}^{60}}}}\\48x{\left( {1 + x} \right)^{60}} &= {\left( {1 + x} \right)^{60}} - 1\\48x{\left( {1 + x} \right)^{60}} - {\left( {1 + x} \right)^{60}} + 1 &= 0\end{aligned}\)
Hence the equation is verified.
As we know interest cannot have a negative value so taking the initial approximation \({x_1} = 0.01\)for solving the equation by Newton’s method.
\(f\left( x \right) = 48x{\left( {1 + x} \right)^{60}} - {\left( {1 + x} \right)^{60}} + 1\)
Taking initial approximation as\({x_1} = 0.01\)
Newton’s formula:
\({x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}\)
\(\begin{aligned}{l}{x_2} &= {x_1} - \frac{{f\left( {{x_1}} \right)}}{{f'\left( {{x_1}} \right)}}\\{x_2} &= 0.01 - \frac{{f\left( {0.01} \right)}}{{f'\left( {0.01} \right)}}\\{x_2} &= 0.00810634\end{aligned}\)
Similarly,
\(\begin{aligned}{l}{x_3} &= 0.00810634 - \frac{{f\left( {0.00810634} \right)}}{{f'\left( {00810634} \right)}}\\{x_3} &= 0.007623071\end{aligned}\)
\(\begin{aligned}{l}{x_4} &= 0.007623071 - \frac{{f\left( {0.007623071} \right)}}{{f'\left( {0.007623071} \right)}}\\{x_4} &= 0.0076287951\end{aligned}\)
\(\begin{aligned}{l}{x_5} &= 0.0076287951 - \frac{{f\left( {0.0076287951} \right)}}{{f'\left( {0.0076287951} \right)}}\\{x_5} &= 0.0076286028\end{aligned}\)
\(\begin{aligned}{l}{x_6} &= 0.0076286028 - \frac{{f\left( {0.0076286028} \right)}}{{f'\left( {0.0076286028} \right)}}\\{x_6} &= 0.0076286028\end{aligned}\)
Since the first 6 digits are not changing so, no need for further calculations.
So, the root of the equation is \(x = 0.0076286\)
Therefore, the monthly interest charge is \(i = x = 0.0076286\)
To convert into rate multiplying by 100
Hence the monthly interest rate charge is \(0.76286\% \).