Chapter 4: Q30E (page 209)
Find the critical numbers of the function.
30. \(h(p) = \frac{{p - 1}}{{{p^2} + 4}}\).
Short Answer
The critical number of the function \(h(p)\) are \(p = 1 + \sqrt 5 \) and \(p = 1 + \sqrt 5 \).
Chapter 4: Q30E (page 209)
Find the critical numbers of the function.
30. \(h(p) = \frac{{p - 1}}{{{p^2} + 4}}\).
The critical number of the function \(h(p)\) are \(p = 1 + \sqrt 5 \) and \(p = 1 + \sqrt 5 \).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the absolute maximum or minimum, local maximum or minimum, of the given graph.
Show that \(\tan x > x\) for \(0 < x < \frac{\pi }{2}\). (Hint: Show that \(f\left( x \right) = \tan x - x\) is increasing on \(\left( {0,\frac{\pi }{2}} \right)\).)
23โ36 โ Find the critical numbers of the function.
23. \(f(x) = 4 + \frac{1}{3}x - \frac{1}{2}{x^2}\).
9โ12 โ Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers\(c\)that satisfy the conclusion of the Mean Value Theorem.
9.\(f(x) = 2{x^2} - 3x + 1\), \((0,2)\)
(a) Determine the vertical and horizontal asymptotes of the function
\(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(b) Determine on which intervals the function \(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\) is increasing or decreasing.
(c) Determine the local maximum and minimum values of the given function
\(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(d) Determine the intervals of concavity and the inflection points of the function \(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(e) Determine the graph of the function for the above information from part (a) to part (d).
What do you think about this solution?
We value your feedback to improve our textbook solutions.