Now, we have\(f'\left( \theta \right) = - \cos \theta + \sin \theta + C\)and \(f\left( \theta \right) = - \sin \theta - \cos \theta + C\theta + D\)
Also, we have \(f\left( 0 \right) = 3\) and \(f'\left( 0 \right) = 4\)
To find value of constant \(C\) put \(f'\left( 0 \right) = 4\) in \(f'\left( \theta \right) = - \cos \theta + \sin \theta + C\)
\(\begin{aligned}{l} \Rightarrow 4 &= - \cos 0 + \sin 0 + C\\ \Rightarrow C &= 5\end{aligned}\)
To find value of constant \(D\) put \(f\left( 0 \right) = 3\) in \(f\left( \theta \right) = - \sin \theta - \cos \theta + C\theta + D\)
\(\begin{aligned}{l} \Rightarrow 3 &= - \sin 0 - cos0 + 5\left( 0 \right) + D\\ \Rightarrow 3 &= - 1 + D\\ \Rightarrow D &= 4\end{aligned}\)
So, required function is \(f\left( \theta \right) = - \sin \theta - \cos \theta + 5\theta + 4\).