Chapter 4: Q24E (page 209)
Find the critical numbers of the function.
24. \[f(x) = {x^3} + 6{x^2} - 15x\].
Short Answer
The critical point is \(x = - 5\) and \(x = 1\).
Chapter 4: Q24E (page 209)
Find the critical numbers of the function.
24. \[f(x) = {x^3} + 6{x^2} - 15x\].
The critical point is \(x = - 5\) and \(x = 1\).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Determine the vertical and horizontal asymptotes of the function
\(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(b) Determine on which intervals the function \(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\) is increasing or decreasing.
(c) Determine the local maximum and minimum values of the given function
\(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(d) Determine the intervals of concavity and the inflection points of the function \(f(x) = x - \frac{1}{6}{x^2} - \frac{2}{3}\ln x\).
(e) Determine the graph of the function for the above information from part (a) to part (d).
Find the absolute maximum and absolute minimum values of on the given interval.
46. \(f(t) = t + \cot \left( {\frac{t}{2}} \right)\), \(\left( {\frac{\pi }{4},\frac{{7\pi }}{4}} \right)\)
(a) Use a graph of \(f\) to estimate the maximum and minimum values. Then find the exact values.
(b) Estimate the value of \(x\) at which \(f\) increases most rapidly. Then find the exact value.
\(f\left( x \right) = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\)
9–12 ■ Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers that satisfy the conclusion of the Mean Value Theorem.
10. \(f(x) = {x^3} - 3x + 2\), \(( - 2\,,\;2)\)
Use the graph to state the absolute and local maximum and minimum values of the function.
What do you think about this solution?
We value your feedback to improve our textbook solutions.