Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the area of the largest rectangle that can be inscribed in the ellipse \({{{x^2}} \mathord{\left/

{\vphantom {{{x^2}} {{a^2}}}} \right.

\kern-\nulldelimiterspace} {{a^2}}} + {{{y^2}} \mathord{\left/

{\vphantom {{{y^2}} {{b^2}}}} \right.

\kern-\nulldelimiterspace} {{b^2}}} = 1\).

Short Answer

Expert verified

The area of the largest rectangle is \(2ab\).

Step by step solution

01

To sketch the figure

Since the rectangle is inscribed in the given ellipse, the rectangle must be symmetric about the\(y - \)axis.

The sketch is shown in the figure below:

02

 To find the area of the rectangle

Let\(x > 0\)be the\(x - \)coordinate and\(y > 0\)be the\(y - \)coordinate of the vertex of the rectangle in the first quadrant.

Therefore, the area of the rectangle is,

\(\begin{array}{l}A = \left( {2x} \right) \cdot \left( {2y\,\,} \right)\,\\ \Rightarrow A = 4xy \cdots \cdots \left( 1 \right)\end{array}\).

We have,

\(\begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\ \Rightarrow \frac{{{y^2}}}{{{b^2}}} = 1 - \frac{{{x^2}}}{{{a^2}}}\\ \Rightarrow y = b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} \end{array}\)

Thus, equation \(\left( 1 \right)\) becomes,

\(A\left( x \right) = 4x\left( {b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} } \right)\)

In order to find the area of the largest rectangle, we need the derivative of the area function.

Therefore,

\(\begin{array}{l}A'\left( x \right) = 4b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} + 4bx\left( {\frac{1}{{2\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} }}} \right) \cdot \frac{{ - 2x}}{{{a^2}}}\\ \Rightarrow A'\left( x \right) = \frac{{4b\left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right) - 4b\frac{{{x^2}}}{{{a^2}}}}}{{\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} }}\end{array}\)

\(\begin{array}{l} \Rightarrow A'\left( x \right) = \frac{{\frac{{4{a^2}b - 8b{x^2}}}{{{a^2}}}}}{{\sqrt {\frac{{{a^2} - {x^2}}}{{{a^2}}}} }}\\ \Rightarrow A'\left( x \right) = \frac{{4b\left( {{a^2} - 2{x^2}} \right)}}{{a\sqrt {{a^2} - {x^2}} }}\end{array}\)

The derivative is defined whenever\({a^2} - {x^2} > 0 \Rightarrow - a < x < a\).

Now, we find the zeros.

\(\begin{array}{l}A'\left( x \right) = 0\\ \Rightarrow \frac{{4b\left( {{a^2} - 2{x^2}} \right)}}{{a\sqrt {{a^2} - {x^2}} }} = 0\\ \Rightarrow 4b\left( {{a^2} - 2{x^2}} \right) = 0\\ \Rightarrow {a^2} - 2{x^2} = 0\\ \Rightarrow {a^2} = 2{x^2}\\ \Rightarrow x = \frac{a}{{\sqrt 2 }}\end{array}\)

Thus, the only critical number for\(A\)is,\(x = \frac{a}{{\sqrt 2 }}\).

Here,\(A'\left( x \right) < 0,\,\,\forall x > \frac{a}{{\sqrt 2 }}\)\(\)and\(A'\left( x \right) > 0,\,\,\forall x < \frac{a}{{\sqrt 2 }}\).

Hence,\(A\)has an absolute maximum at\(x = \frac{a}{{\sqrt 2 }}\).

Thus, the greatest area of the inscribed rectangle is,

\(\begin{array}{l}A\left( {\frac{a}{{\sqrt 2 }}} \right) = 4\left( {\frac{a}{{\sqrt 2 }}} \right)\left( {b\sqrt {1 - \frac{{{{\left( {\frac{a}{{\sqrt 2 }}} \right)}^2}}}{{{a^2}}}} } \right)\\ \Rightarrow A\left( {\frac{a}{{\sqrt 2 }}} \right) = \frac{{4ab}}{{\sqrt 2 }}\sqrt {1 - \frac{{{a^2}}}{{2{a^2}}}} \\ \Rightarrow A\left( {\frac{a}{{\sqrt 2 }}} \right) = 4b\frac{a}{2}\\ \Rightarrow A\left( {\frac{a}{{\sqrt 2 }}} \right) = 2ab\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free