The algorithm derived in part (a) is:
\({x_{n + 1}} = 2{x_n} - a{x_n}^2\)
As we know that the algorithm is used to calculate the reciprocal and we need to calculate,\({1 \mathord{\left/
{\vphantom {1 {1.6984}}} \right.
\kern-\nulldelimiterspace} {1.6984}}\), so\(a = {1 \mathord{\left/
{\vphantom {1 {1.6984}}} \right.
\kern-\nulldelimiterspace} {1.6984}}\)
We know1.6984 is very close to 1.7 so, therefore taking the initial approximation\({x_1} = \frac{1}{{1.7}} = 0.5\)
\(\begin{aligned}{l}{x_2} &= 2{x_1} - a{x_1}^2\\{x_2} &= 2\left( {0.5} \right) - \left( {\frac{1}{{1.6984}}} \right){\left( {0.5} \right)^2}\\{x_2} &= 0.5754\end{aligned}\)
\(\begin{aligned}{l}{x_3} &= 2\left( {0.5754} \right) - \left( {\frac{1}{{1.6984}}} \right){\left( {0.5754} \right)^2}\\{x_3} &= 0.58848496425\end{aligned}\)
\(\begin{aligned}{l}{x_4} &= 2\left( {0.58848496425} \right) - \left( {\frac{1}{{1.6984}}} \right){\left( {0.58848496425} \right)^2}\\{x_4} &= 0.58878929143\end{aligned}\)
\(\begin{aligned}{l}{x_5} &= 2\left( {0.58878929143} \right) - \left( {\frac{1}{{1.6984}}} \right){\left( {0.58878929143} \right)^2}\\{x_5} &= 0.58878944889\end{aligned}\)
Since the first 6 decimal places are not changing therefore round up to 6 digits\({1 \mathord{\left/
{\vphantom {1 {1.6984}}} \right.
\kern-\nulldelimiterspace} {1.6984}} = 0.588789\).