Chapter 4: Q1E (page 222)
(a) Determine the intervals on which the function \(f(x) = 2{x^3} + 3{x^2} - 36x\) is increasing or decreasing.
(b) Determine the local maximum and minimum values of \(f(x) = 2{x^3} + 3{x^2} - 36x\).
(c) Determine the intervals of concavity and the inflection points of\(f(x) = 2{x^3} + 3{x^2} - 36x\).
Short Answer
(a) The function \(f(x)\) is increasing on \(( - \infty , - 3) \cup (2,\infty )\) and decreasing on \(( - 3,2)\).
(b) The local maximum is \(f( - 3) = 81\) and local minimum is \(f(2) = - 44\).
(c) The function \(f(x)\) is concave upward on \(\left( { - \frac{1}{2},\;\infty } \right)\) and \(f(x)\) is concave downward on \(\left( { - \infty ,\; - \frac{1}{2}} \right)\) and the inflection point is \(\left( { - \frac{1}{2},\;\frac{{37}}{2}} \right)\).