Let\(a > 0\)be the length of one side of the rectangle which lies on the base of the triangle.
Let\(b > 0\)be the length of other side of the rectangle.
Therefore, the area of the rectangle is,
\(A = a \cdot b\,\,\, \cdots \cdots \left( 1 \right)\).
From figure in step 1, consider the triangle at the bottom on the right side, we have,
\(\begin{array}{l}\tan \left( {60^\circ } \right) = \frac{b}{{\frac{{L - a}}{2}}}\\ \Rightarrow \sqrt 3 = \frac{{2b}}{{L - a}}\\ \Rightarrow b = \frac{{\sqrt 3 }}{2}\left( {L - a} \right)\end{array}\)
Thus, equation \(\left( 1 \right)\) becomes,
\(\begin{array}{l}A\left( a \right) = a \cdot \left( {\frac{{\sqrt 3 }}{2}\left( {L - a} \right)} \right)\\ \Rightarrow A\left( a \right) = \frac{{\sqrt 3 }}{2}La - {a^2}\end{array}\)
In order to find the length of a side of a rectangle with maximum area, we need the derivative of the area function.
Therefore,\(A'\left( a \right) = \frac{{\sqrt 3 }}{2}\left( {L - 2a} \right)\).
Thus, the only critical number for\(A\)is,\(a = \frac{L}{2}\).
Here,\(A'\left( a \right) < 0,\,\,\forall a > \frac{L}{2}\)\(\)and\(A'\left( a \right) > 0,\,\,\forall a < \frac{L}{2}\).
Hence,\(A\)has an absolute maximum at\(a = \frac{L}{2}\).
Thus, the area of the inscribed rectangle is the greatest when the lengths of the sides are\(a = \frac{L}{2}\) and
\(\begin{array}{l}b = \frac{{\sqrt 3 }}{2}\left( {L - \frac{L}{2}} \right)\\ \Rightarrow b = \frac{{\sqrt 3 L}}{4}\end{array}\)