Now, we have, \(f'\left( x \right) = \frac{2}{5}{x^{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}} + C\)
Now, the general antiderivative of \(f'\left( x \right) = \frac{2}{5}{x^{{5 \mathord{\left/
{\vphantom {5 3}} \right.
\kern-\nulldelimiterspace} 3}}} + C\) is,
\(\begin{aligned}{c}f\left( x \right) &= \frac{2}{5}\frac{{{x^{{8 \mathord{\left/
{\vphantom {8 3}} \right.
\kern-\nulldelimiterspace} 3}}}}}{{{\raise0.7ex\hbox{$8$} \!\mathord{\left/
{\vphantom {8 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}} + Cx + D\\ = \frac{3}{{20}}{x^{{8 \mathord{\left/
{\vphantom {8 3}} \right.
\kern-\nulldelimiterspace} 3}}} + Cx + D\end{aligned}\)
So, our required function is\(f\left( x \right) = \frac{3}{{20}}{x^{{8 \mathord{\left/
{\vphantom {8 3}} \right.
\kern-\nulldelimiterspace} 3}}} + Cx + D\).