Here we have,
\(\begin{aligned}{c}f\left( x \right) = 4 - 3{\left( {1 + {x^2}} \right)^{ - 1}}\\ = 4 - \frac{3}{{1 + {x^2}}}\end{aligned}\)
Let\(F\)be an antiderivative of\(f\).
To find the antiderivative we have to integrate the given function.
So,
\(\begin{aligned}{c}F\left( x \right) = \int {\left( {4 - \frac{3}{{1 + {x^2}}}} \right)dx} \\ = 4x - 3{\tan ^{ - 1}}x + C\end{aligned}\)
Given that, therefore we will substitute \(x = 1\) to find \(C\).
\(\begin{aligned}{c}F\left( 1 \right) = 4\left( 1 \right) - 3{\tan ^{ - 1}}\left( 1 \right) + C\\0 = 4 - \frac{{3\pi }}{4} + C\\C = \frac{{3\pi }}{4} - 4\end{aligned}\)
Substitute back the value of\(C\). We get,
\(F\left( x \right) = 4x - 3{\tan ^{ - 1}}x + \frac{{3\pi }}{4} - 4\)