Chapter 9: Problem 92
Verify that the two planes are parallel, and find the distance between the planes. $$ \begin{array}{l} 2 x-4 z=4 \\ 2 x-4 z=10 \end{array} $$
Chapter 9: Problem 92
Verify that the two planes are parallel, and find the distance between the planes. $$ \begin{array}{l} 2 x-4 z=4 \\ 2 x-4 z=10 \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle-4,8\rangle, \quad \mathbf{v}=\langle 6,3\rangle $$
In Exercises \(15-20\), determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 4,3\rangle \\ \mathbf{v}=\left\langle\frac{1}{2},-\frac{2}{3}\right\rangle \end{array} $$
In Exercises \(9-14,\) find the angle \(\theta\) between the vectors. $$ \mathbf{u}=3 \mathbf{i}+\mathbf{j}, \mathbf{v}=-2 \mathbf{i}+4 \mathbf{j} $$
The vector \(v\) and its initial point are given. Find the terminal point. \(\mathbf{v}=\left\langle 1,-\frac{2}{3}, \frac{1}{2}\right\rangle\) Initial point: \(\left(0,2, \frac{5}{2}\right)\)
In Exercises 45 and \(46,\) determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { If } \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w} \text { and } \mathbf{u} \neq \mathbf{0}, \text { then } \mathbf{v}=\mathbf{w} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.