Chapter 9: Problem 86
Let \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
Chapter 9: Problem 86
Let \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-\mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-\mathbf{k} \end{array} $$
Give the standard equation of a sphere of radius \(r\), centered at \(\left(x_{0}, y_{0}, z_{0}\right)\)
Find the direction angles of the vector. $$ \mathbf{u}=\langle-2,6,1\rangle $$
In Exercises 57-60, determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathrm{z}=\langle 3,2,-5\rangle\) (a) \langle-6,-4,10\rangle (b) \(\left\langle 2, \frac{4}{3},-\frac{10}{3}\right\rangle\) (c) \langle 6,4,10\rangle (d) \langle 1,-4,2\rangle
The vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-3,4),(0,1,2),(-1,2,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.