Chapter 9: Problem 85
Let \(A, B,\) and \(C\) be vertices of a triangle. Find \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}\)
Chapter 9: Problem 85
Let \(A, B,\) and \(C\) be vertices of a triangle. Find \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA toy wagon is pulled by exerting a force of 25 pounds on a handle that makes a \(20^{\circ}\) angle with the horizontal. Find the work done in pulling the wagon 50 feet.
In Exercises 33-36, (a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,3\rangle, \quad \mathbf{v}=\langle 5,1\rangle $$
In Exercises 47 and \(48,\) the vector \(v\) and its initial point are given. Find the terminal point. \(\mathbf{v}=\langle 3,-5,6\rangle\) Initial point: (0,6,2)
In Exercises 31 and 32 , find the component of \(u\) that is orthogonal to \(\mathbf{v},\) given \(\mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). $$ \mathbf{u}=\langle 6,7\rangle, \quad \mathbf{v}=\langle 1,4\rangle, \quad \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle 2,8\rangle $$
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=5 \mathbf{i}+3 \mathbf{j}-\mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.