Chapter 9: Problem 8
In Exercises \(1-8,\) describe and sketch the surface. $$ z-e^{y}=0 $$
Chapter 9: Problem 8
In Exercises \(1-8,\) describe and sketch the surface. $$ z-e^{y}=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(x z\) -plane, has magnitude \(5,\) and makes an angle of \(45^{\circ}\) with the positive \(z\) -axis.
Let \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{aligned} &\mathbf{u}=\mathbf{j}+6 \mathbf{k}\\\ &\mathbf{v}=\mathbf{i}-2 \mathbf{j}-\mathbf{k} \end{aligned} $$
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{z}-3 \mathbf{u}=\mathbf{w}\)
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal to \(\mathbf{w},\) then \(\mathbf{u}+\mathbf{v}\) is orthogonal to \(\mathbf{w}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.