Chapter 9: Problem 8
Find the area of the region. One petal of \(r=\cos 5 \theta\)
Chapter 9: Problem 8
Find the area of the region. One petal of \(r=\cos 5 \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite an equation whose graph consists of the set of points \(P(x, y, z)\) that are twice as far from \(A(0,-1,1)\) as from \(B(1,2,0)\)
If the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
Let \(\mathbf{u}=\mathbf{i}+\mathbf{j}, \mathbf{v}=\mathbf{j}+\mathbf{k},\) and \(\mathbf{w}=a \mathbf{u}+b \mathbf{v} .\) (a) Sketch \(\mathbf{u}\) and \(\mathbf{v}\). (b) If \(\mathbf{w}=\mathbf{0}\), show that \(a\) and \(b\) must both be zero. (c) Find \(a\) and \(b\) such that \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}\). (d) Show that no choice of \(a\) and \(b\) yields \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}\).
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} \\ \mathbf{v}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \end{array} $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-\mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-\mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.