Chapter 9: Problem 76
Sketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(x z\) -plane, has magnitude \(5,\) and makes an angle of \(45^{\circ}\) with the positive \(z\) -axis.
Chapter 9: Problem 76
Sketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(x z\) -plane, has magnitude \(5,\) and makes an angle of \(45^{\circ}\) with the positive \(z\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 75 and \(76,\) sketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(y z\) -plane, has magnitude 2 , and makes an angle of \(30^{\circ}\) with the positive \(y\) -axis.
Let \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-\mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-\mathbf{k} \end{array} $$
Determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}\) has initial point (5,4,1) and terminal point (-2,-4,4) (a) \langle 7,6,2\rangle (b) \langle 14,16,-6\rangle
In Exercises 47 and \(48,\) the vector \(v\) and its initial point are given. Find the terminal point. \(\mathbf{v}=\langle 3,-5,6\rangle\) Initial point: (0,6,2)
What do you think about this solution?
We value your feedback to improve our textbook solutions.