Chapter 9: Problem 73
In Exercises 73 and \(74,\) determine if any of the planes are parallel or identical. $$ \begin{array}{l} P_{1}: 3 x-2 y+5 z=10 \\ P_{2}:-6 x+4 y-10 z=5 \\ P_{3}:-3 x+2 y+5 z=8 \\ P_{4}: 75 x-50 y+125 z=250 \end{array} $$
Chapter 9: Problem 73
In Exercises 73 and \(74,\) determine if any of the planes are parallel or identical. $$ \begin{array}{l} P_{1}: 3 x-2 y+5 z=10 \\ P_{2}:-6 x+4 y-10 z=5 \\ P_{3}:-3 x+2 y+5 z=8 \\ P_{4}: 75 x-50 y+125 z=250 \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse vectors to find the point that lies two-thirds of the way from \(P\) to \(Q\). \(P(1,2,5), \quad Q(6,8,2)\)
Determine which of the following are defined for nonzero vectors \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\). Explain your reasoning. (a) \(\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})\) (b) \((\mathbf{u} \cdot \mathbf{v}) \mathbf{w}\) (c) \(\mathbf{u} \cdot \mathbf{v}+\mathbf{w}\) (d) \(\|\mathbf{u}\| \cdot(\mathbf{v}+\mathbf{w})\)
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{aligned} &\mathbf{u}=\mathbf{j}+6 \mathbf{k}\\\ &\mathbf{v}=\mathbf{i}-2 \mathbf{j}-\mathbf{k} \end{aligned} $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\mathbf{i}, \quad \mathbf{v}=\mathbf{i} $$
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle 0,6,-4\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.