Chapter 9: Problem 67
Find the magnitude of \(v\). Initial point of \(\mathbf{v}:(1,-3,4)\) Terminal point of \(\mathbf{v}:(1,0,-1)\)
Chapter 9: Problem 67
Find the magnitude of \(v\). Initial point of \(\mathbf{v}:(1,-3,4)\) Terminal point of \(\mathbf{v}:(1,0,-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle-4,8\rangle, \quad \mathbf{v}=\langle 6,3\rangle $$
In Exercises 63 and 64 , sketch the solid that has the given description in spherical coordinates. $$ 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi / 2,1 \leq \rho \leq 3 $$
In Exercises 49 and \(50,\) find each scalar multiple of \(v\) and sketch its graph. \(\mathbf{v}=\langle 1,2,2\rangle\) (a) \(2 \mathbf{v}\) (b) \(-\mathbf{v}\) (c) \(\frac{3}{2} \mathbf{v}\) (d) \(0 \mathbf{v}\)
Prove that \(\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.