Chapter 9: Problem 65
In Exercises \(65-68,\) find the magnitude of \(v\). \(\mathbf{v}=\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}\)
Chapter 9: Problem 65
In Exercises \(65-68,\) find the magnitude of \(v\). \(\mathbf{v}=\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 61 and \(62,\) sketch the solid that has the given description in cylindrical coordinates. $$ 0 \leq \theta \leq \pi / 2,0 \leq r \leq 2,0 \leq z \leq 4 $$
In Exercises 45 and \(46,\) determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { If } \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w} \text { and } \mathbf{u} \neq \mathbf{0}, \text { then } \mathbf{v}=\mathbf{w} $$
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
Use vectors to find the point that lies two-thirds of the way from \(P\) to \(Q\). \(P(1,2,5), \quad Q(6,8,2)\)
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} \\ \mathbf{v}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.