Chapter 9: Problem 56
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{u}+\mathbf{v}-\mathbf{w}+3 \mathbf{z}=\mathbf{0}\)
Chapter 9: Problem 56
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{u}+\mathbf{v}-\mathbf{w}+3 \mathbf{z}=\mathbf{0}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(A, B,\) and \(C\) be vertices of a triangle. Find \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}\)
In Exercises 63 and 64 , sketch the solid that has the given description in spherical coordinates. $$ 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 6,0 \leq \rho \leq a \sec \phi $$
Consider the vectors \(\mathbf{u}=\langle\cos \alpha, \sin \alpha, 0\rangle\) and \(\mathbf{v}=\langle\cos \beta, \sin \beta, 0\rangle\) where \(\alpha>\beta\) Find the dot product of the vectors and use the result to prove the identity \(\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta\).
Prove the Cauchy-Schwarz Inequality \(|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| .\)
The vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-7,3),(-1,5,8),(4,6,-1) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.