Chapter 9: Problem 52
In Exercises \(47-52,\) convert the point from spherical coordinates to cylindrical coordinates. $$ (7, \pi / 4,3 \pi / 4) $$
Chapter 9: Problem 52
In Exercises \(47-52,\) convert the point from spherical coordinates to cylindrical coordinates. $$ (7, \pi / 4,3 \pi / 4) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(u \cdot v\). \(\|\mathbf{u}\|=40,\|\mathbf{v}\|=25,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(5 \pi / 6\).
Give the standard equation of a sphere of radius \(r\), centered at \(\left(x_{0}, y_{0}, z_{0}\right)\)
The vector \(\mathbf{u}=\langle 3240,1450,2235\rangle\) gives the numbers of hamburgers, chicken sandwiches, and cheeseburgers, respectively, sold at a fast-food restaurant in one week. The vector \(\mathbf{v}=\langle 1.35,2.65,1.85\rangle\) gives the prices (in dollars) per unit for the three food items. Find the dot product \(\mathbf{u} \cdot \mathbf{v},\) and explain what information it gives.
What can be said about the vectors \(\mathbf{u}\) and \(\mathbf{v}\) if (a) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{u}\) and \((b)\) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{0}\) ?
In Exercises 45 and \(46,\) determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { If } \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w} \text { and } \mathbf{u} \neq \mathbf{0}, \text { then } \mathbf{v}=\mathbf{w} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.