Chapter 9: Problem 51
Use vectors to prove that the diagonals of a rhombus are perpendicular.
Chapter 9: Problem 51
Use vectors to prove that the diagonals of a rhombus are perpendicular.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(u \cdot v\). \(\|\mathbf{u}\|=40,\|\mathbf{v}\|=25,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(5 \pi / 6\).
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle\cos \theta, \sin \theta,-1\rangle \\\\\mathbf{v}=\langle\sin \theta,-\cos \theta, 0\rangle \end{array} $$
In Exercises 29 and 30 . find the direction angles of the vector. $$ \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k} $$
In Exercises 45 and \(46,\) the initial and terminal points of a vector \(v\) are given. (a) Sketch the directed line segment, (b) find the component form of the vector, and (c) sketch the vector with its initial point at the origin. Initial point: (-1,2,3) Terminal point: (3,3,4)
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{u}+\mathbf{v}-\mathbf{w}+3 \mathbf{z}=\mathbf{0}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.