Chapter 9: Problem 5
What is the \(z\) -coordinate of any point in the \(x y\) -plane?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 9: Problem 5
What is the \(z\) -coordinate of any point in the \(x y\) -plane?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+4 \mathbf{j} \\ \mathbf{v}=-2 \mathbf{j}+3 \mathbf{k} \end{array} $$
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
What can be said about the vectors \(\mathbf{u}\) and \(\mathbf{v}\) if (a) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{u}\) and \((b)\) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{0}\) ?
In Exercises 49 and \(50,\) find each scalar multiple of \(v\) and sketch its graph. \(\mathbf{v}=\langle 1,2,2\rangle\) (a) \(2 \mathbf{v}\) (b) \(-\mathbf{v}\) (c) \(\frac{3}{2} \mathbf{v}\) (d) \(0 \mathbf{v}\)
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(4,-5,2)}\) \(\frac{\text { Terminal Point }}{(-1,7,-3)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.