Chapter 9: Problem 49
Give the integral formulas for area and arc length in polar coordinates.
Chapter 9: Problem 49
Give the integral formulas for area and arc length in polar coordinates.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 2,-3,1\rangle \\ \mathbf{v}=\langle-1,-1,-1\rangle \end{array} $$
In Exercises 33-36, (a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,3\rangle, \quad \mathbf{v}=\langle 5,1\rangle $$
In Exercises 31 and 32 , find the component of \(u\) that is orthogonal to \(\mathbf{v},\) given \(\mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). $$ \mathbf{u}=\langle 6,7\rangle, \quad \mathbf{v}=\langle 1,4\rangle, \quad \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle 2,8\rangle $$
Find \(u \cdot v\). \(\|\mathbf{u}\|=40,\|\mathbf{v}\|=25,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(5 \pi / 6\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.