Chapter 9: Problem 48
Prove \(\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\|\) if \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal.
Chapter 9: Problem 48
Prove \(\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\|\) if \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle 2,-3,4\rangle, \quad \mathbf{v}=\langle 0,6,5\rangle $$
In Exercises \(9-14,\) find the angle \(\theta\) between the vectors. $$ \mathbf{u}=3 \mathbf{i}+\mathbf{j}, \mathbf{v}=-2 \mathbf{i}+4 \mathbf{j} $$
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
Find the component of \(u\) that is orthogonal to \(\mathbf{v},\) given \(\mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). $$ \mathbf{u}=\langle 8,2,0\rangle, \quad \mathbf{v}=\langle 2,1,-1\rangle, \quad \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle 6,3,-3\rangle $$
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle\cos \theta, \sin \theta,-1\rangle \\\\\mathbf{v}=\langle\sin \theta,-\cos \theta, 0\rangle \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.