Chapter 9: Problem 47
Find the angle between a cube's diagonal and one of its edges.
Chapter 9: Problem 47
Find the angle between a cube's diagonal and one of its edges.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 1,0,4\rangle, \quad \mathbf{v}=\langle 3,0,2\rangle $$
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle-4,8\rangle, \quad \mathbf{v}=\langle 6,3\rangle $$
Find the direction angles of the vector. $$ \mathbf{u}=\langle-2,6,1\rangle $$
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.