Chapter 9: Problem 45
Find an equation of the plane. The plane contains the \(y\) -axis and makes an angle of \(\pi / 6\) with the positive \(x\) -axis.
Chapter 9: Problem 45
Find an equation of the plane. The plane contains the \(y\) -axis and makes an angle of \(\pi / 6\) with the positive \(x\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
In Exercises 49 and \(50,\) find each scalar multiple of \(v\) and sketch its graph. \(\mathbf{v}=\langle 1,2,2\rangle\) (a) \(2 \mathbf{v}\) (b) \(-\mathbf{v}\) (c) \(\frac{3}{2} \mathbf{v}\) (d) \(0 \mathbf{v}\)
Sketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(x z\) -plane, has magnitude \(5,\) and makes an angle of \(45^{\circ}\) with the positive \(z\) -axis.
The vector \(v\) and its initial point are given. Find the terminal point. \(\mathbf{v}=\left\langle 1,-\frac{2}{3}, \frac{1}{2}\right\rangle\) Initial point: \(\left(0,2, \frac{5}{2}\right)\)
In Exercises \(25-28,\) find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.