Chapter 9: Problem 42
What does the equation \(z=x^{2}\) represent in the \(x z\) -plane? What does it represent in three-space?
Chapter 9: Problem 42
What does the equation \(z=x^{2}\) represent in the \(x z\) -plane? What does it represent in three-space?
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}=\frac{1}{2} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{3}{4} \mathbf{k}\) (a) \(6 \mathbf{i}-4 \mathbf{j}+9 \mathbf{k}\) (b) \(-\mathbf{i}+\frac{4}{3} \mathbf{j}-\frac{3}{2} \mathbf{k}\) (c) \(12 \mathbf{i}+9 \mathbf{k}\) (d) \(\frac{3}{4} \mathbf{i}-\mathbf{j}+\frac{9}{8} \mathbf{k}\)
Use vectors to determine whether the points are collinear. (0,0,0),(1,3,-2),(2,-6,4)
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \end{array} $$
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,1,2\rangle, \quad \mathbf{v}=\langle 0,3,4\rangle $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle 2,-3,4\rangle, \quad \mathbf{v}=\langle 0,6,5\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.