Chapter 9: Problem 41
In Exercises \(41-46,\) convert the point from cylindrical coordinates to spherical coordinates. $$ (4, \pi / 4,0) $$
Chapter 9: Problem 41
In Exercises \(41-46,\) convert the point from cylindrical coordinates to spherical coordinates. $$ (4, \pi / 4,0) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(x z\) -plane, has magnitude \(5,\) and makes an angle of \(45^{\circ}\) with the positive \(z\) -axis.
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \end{array} $$
In Exercises 57-60, determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathrm{z}=\langle 3,2,-5\rangle\) (a) \langle-6,-4,10\rangle (b) \(\left\langle 2, \frac{4}{3},-\frac{10}{3}\right\rangle\) (c) \langle 6,4,10\rangle (d) \langle 1,-4,2\rangle
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 1,0,4\rangle, \quad \mathbf{v}=\langle 3,0,2\rangle $$
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle\cos \theta, \sin \theta,-1\rangle \\\\\mathbf{v}=\langle\sin \theta,-\cos \theta, 0\rangle \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.